Recall: Min-Max Theory (Almgren-Pitts, Simon-Smith, Guaraco) Yau Conj (1982): 3 00 'ly many min. hypersurf. in ALL (M"", g)
for general metrics for general metrics Thm A: (Marques-Neves) YES for Ricg > 0 or Frankel Property holds $ThmB : (Song) _{YES}$ in general. Thm C: (Liokumsvich-Marques. Neves) $\{\omega_p\}$ satisfy a Weyl Law. For "generic" metrics, Thin D: (Irie-Marques-Neves) Min. hypersurf. are "dense". Thin E: (Marques-Neves-Song) Min. hypersurf. are "equi-distributed". $Q:$ T_S there a "Morse theory" for the Area Functional? which handle? Morse M manifold crit.pts **R**Construct M theory $f: M \to \mathbb{R}$ Morse criticity topologically index of Given M^{iri}manifold Buhite Buny Metric Thin
9: Riem metric on M => Ag is "Morse" $g :$ Riem metric on $M =$ \mathbb{Z} of g is "Morse"
A. \cdot 7 (\cdot \cdot \mathbb{Z}) = Ω for generic g $Q:$ Control the index of the crit pts" \Rightarrow \mathcal{A}_g : $\mathcal{I}_n(\mu; \mathbb{Z}_1) \rightarrow \mathbb{R}$ for generic \mathcal{J} and \mathcal{I}_g min hypersurf? Morse Index Conjecture (Marques-Neves) For Seneric $(M^{n+1} \cdot g)$, \exists seg. $\{\Sigma_{h}\}_{h\in/N}$ of min. hypersurfaces in M St. (1) index $(\Sigma_k) = k$. [Recall: $Z_n(M; Z_n) \sim \mathbb{RP}^\infty$]

z) \mathcal{C} $\ddot{}$ $R^m \leq$ Areal 2_h) \leq C R^{n+1} for some C $>$ 0

The proof consists of 3 components:

- (I) Existence: do multi-parameter min-max (Almgren, Marques-Neves) ∞ stationary vanifold V_{h} (obtained via vanifold limit) Main Difficulty: convergence is weak & multiplicity issue
- (II) Morse Index characterization (Marques-Neves '16) [Heuristics k -parameter sweepout \Rightarrow index $(V_k) \leq k$] Assume "multiplicity one". then index $(V_h) = k$
- (II) Multiplicity One Conj: "multiplicity one" holds for generic (M"".g). Solved by X. Zhou 2020, based on earlier work of Zhou - Zhu '19 on min-max theory for prescribed mean cunature
- Q : Can we control the geometry/topology of Σ_h ?

 $($ Particl results in dim (m) = 3 : Chodosh-Mantoucidis 2020)

Two applications of min-max theory

Geometry Willmore conjecture 1965 $\Sigma \subset \mathbb{R}^3$ closed embedded $\begin{pmatrix} 0 & 0 \ 0 & 1 \end{pmatrix}$ and writing energy Surface of genus ≈ 1 $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{5}}$ $\frac{1}{5}$ $\frac{1}{5}$ R^3 B Moreover "=" holds iff $\Sigma \cong$ "Clifford tons".

Marques-Never 14: Willmore Conj. holds.

Remark: Both "energy" are conformally invariant. We will describe Willmore Conj. and its proof in more detail.

Willmore Conjecture

$$
\Sigma^{2} \subseteq \mathbb{R}^{3} \longrightarrow W(\Sigma) := \frac{1}{4} \int H^{2} da
$$
 "William
opt surface

Remarks: . W is conf. invariant, i.e. $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$ is a conformal differ. $\Rightarrow W(\varphi(\Sigma)) = W(\Sigma)$

$$
W(\text{round sphere}) = W(S^2(1)) = \frac{1}{4} \int_{S^2(1)} 2^2 da = Area(S^2(1)) = 4\pi
$$

$$
\frac{\pi_{hm}}{\pi_{m}} \text{ (William (William In the image 16)} \quad W(\Sigma) \geq \frac{4\pi}{2} \quad \& \quad \text{is a black number}
$$
\n
$$
\frac{1}{20} \text{ (H}^2 = (K_1 + K_2)^2 = (K_1 - K_2)^2 + 4K_1K_2 = \frac{1}{2} \int_0^{\frac{5}{2}} \
$$

 \underline{Q} : What about the next smallest energy? $Conj: \mathcal{W}(\Sigma) \geqslant 2\pi^2$ if genus $(\Sigma) \geqslant 1$ Note: Willmore checked rotationally symmetric tori We can reformulate the question to surfaces in \mathbb{S}^3 . $1R^3 \leftarrow$ Steregraphic projection 5^3 $A = \S^3 = R' \cup \S^3$ \mathbb{P} E n \mathbb{P} and \mathbb{P} \mathbb{P} and \mathbb c unsture of S^3 NCE 4fH'da ^W ^E f It it ^d \sum Key minimizes W in \mathbb{R}^3 \sim minimizes "area" in \mathbb{S}^3 Observation Millmore surfaces in \mathbb{R}^3 \leftarrow min surface in \mathbb{S}^3 Examples: \mathbb{R}^3 . $\mathcal{W} = \frac{1}{4}\int H^2$ \mathbb{S}^3 . $\mathcal{W} = \int I + \frac{1}{4}\tilde{H}^2$
round spheres $\mathcal{W} = 4\pi$ tst. geodesic \mathbb{S}^2 . Area=4 π round spheres $W = 4\pi$ Willmore's torus $W = 2\pi^2$ Clifford tons. Area = $2\pi^2$. $S(\frac{1}{2}) \times S(\frac{1}{2}) \subseteq S \subseteq \mathbb{R}$ Partial Results: C = C

- \cdot Li-Yau '82: Σ immersed \Rightarrow $W(\Sigma) > 8\pi$ (>2 π^2).
- . L. Simon '93 : existence of W-minimizing toms
- . Ros '99: Conj. holds under the assumption of antipodal symmetry.

Finally, Maryues-Nowes 'If ansedd willmore, in the image, we find the result of Maryues-Nowes' Proof'' #
$$
\frac{1}{1000}
$$
 for $\frac{1}{1000}$ (1) Conf(S³) := { $\frac{1}{1000}$ s³ + 5 s¹ + 5 s² + 5 s³ + 5 s⁴ + 5 s⁵ + 5 s⁶ + 5 s⁷ + 5 s⁸ + 5 s

 \bullet

THEN, $\exists y \in I^5$ st Area $(\Phi(y))$ > 2 π^2 .

Assume this at the moment, we prove Willmore Conjecture. Given any do sed embedded surface $\Sigma \subseteq S^3$. genus $(\Sigma) \ge 1$. We can constmet a 5-parameter "canonical family" $\mathbf{\mathcal{P}}$: $\mathbf{\mathcal{B}}^{\mathsf{T}}$ x (- π , π) \longrightarrow $\mathcal{Z}_1(\mathbf{\mathcal{S}}^{\mathsf{T}};\mathbf{\mathcal{Z}})$ v $\frac{1}{2}$ dist. \mathbb{C}^3 $Conf(S^3)$ dist_g? $\Phi(v,t) = \int x \epsilon S^3 | dist_{S^1}(x, \mathcal{Y}_v(\Sigma)) = t \}$ 2 One can show that Φ satisfies (1)-(3) by a cts extension to $\partial \Sigma^5$. Also, one can prove t deg Q = genus (Σ) 31 so (4) is also satified. (v,t) $2\pi^2$ Thm \Rightarrow $\exists y \in I^5$ st Arca($\Phi(y)$) > $2\pi^2$ Re call by Prelim result (iii) + conf. invariance of W . $W(\Sigma) = W(\mathcal{H}(\Sigma)) \ge \text{Area}(\Phi(y)) \ge 2\pi^2$. p Idea of Proof for " $2\pi^2$ Thm":

Given Φ as in the theorem, consider s - parameter min-max: $L(\overline{\mathfrak{G}}) = \frac{\ln f}{\delta \sim \delta}$ (sup Area($\overline{\Phi}(x)$) Min-Max Theory \Rightarrow $L(\texttt{[}\Phi\texttt{]})$ is achieved by the area of some min surf. Cup to multiplicity).

ie $L(G_i) = m$, Area(Σ_i) + m, Area(Σ_i) + "+ mg Area(Σ_i)

 N ote: Area (2;) > 47 => f = 1 k m, = 1 (: 87 > 27²) $\text{so. } L(\text{[}4\text{])} = \text{Area}(\Sigma)$

Marques-Noves' Morse index upper bound.

le-parameter sweeports = min-max min. surf of index \leq k Now, Φ is 5-parameter family \Rightarrow index (2) ≤ 5 Urbano's result \Rightarrow index(Σ) = 5 and $\Sigma \subseteq$ Clifford torus r
Area = $2\pi^2$